OPAQUE PIGMENT WHITE #### **Barnes Products P/L** Chemwatch: 9848798 Version No: 10.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: **17/03/2023**Print Date: **29/03/2023**S.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | OPAQUE PIGMENT WHITE | |-------------------------------|----------------------| | Chemical Name | Not Applicable | | Synonyms | 6834 WHITE | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Pigment. ### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Barnes Products P/L | |-------------------------|--| | Address | 5 Greenhills Avenue Moorebank NSW 2170 Australia | | Telephone | +61 2 9793 7555 | | Fax | +61 2 9793 7091 | | Website | http://www.barnes.com.au/ | | Email | sales@barnes.com.au | ### **Emergency telephone number** | Association / Organisation | Barnes Products Pty Ltd | |-----------------------------------|--| | Emergency telephone numbers | +61 2 9793 7555 Business Hours | | Other emergency telephone numbers | Poisons Information Centre 13 1126 after hours | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture #### HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | į | | | Toxicity | 1 | - : | | | Body Contact | 2 | | 0 = Minimum
1 = Low | | Reactivity | 1 | i | 2 = Moderate | | Chronic | 0 | | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |--------------------|--| | Classification [1] | Serious Eye Damage/Eye Irritation Category 2A | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -
Annex VI | #### Label elements Signal word Warning ### Hazard statement(s) H319 Causes serious eye irritation. ### Precautionary statement(s) Prevention | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | |------|--| | P264 | Wash all exposed external body areas thoroughly after handling. | ### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P337+P313 | If eye irritation persists: Get medical advice/attention. | #### Precautionary statement(s) Storage Not Applicable ### Precautionary statement(s) Disposal Not Applicable ### **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---|-----------|------------------------------------| | 13463-67-7 | 30-60 | titanium dioxide | | 68515-49-1 | 30-60 | di-C9-11-alkyl phthalate, C10-rich | | 21645-51-2 | <5 | aluminium hydroxide | | 7631-86-9 | <5 | silica amorphous | | 122-99-6 | 0.1-1 | ethylene glycol phenyl ether | | 111-76-2 | 0.1-1 | ethylene glycol monobutyl ether | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | #### **SECTION 4 First aid measures** ### D | Description of first aid measures | | | |-----------------------------------|--|--| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket | | mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor. ### If swallowed do NOT induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Ingestion ▶ Observe the patient carefully. - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Seek medical advice. #### Indication of any immediate medical attention and special treatment needed Treat symptomatically, For acute or short term repeated exposures to ethylene glycol: - Early treatment of ingestion is important. Ensure emesis is satisfactory. - Test and correct for metabolic acidosis and hypocalcaemia. - ▶ Apply sustained diuresis when possible with hypertonic mannitol. - Evaluate renal status and begin haemodialysis if indicated. [I.L.O] - Papid absorption is an indication that emesis or lavage is effective only in the first few hours. Cathartics and charcoal are generally not effective. - Correct acidosis, fluid/electrolyte balance and respiratory depression in the usual manner. Systemic acidosis (below 7.2) can be treated with intravenous sodium bicarbonate solution. - Ethanol therapy prolongs the half-life of ethylene glycol and reduces the formation of toxic metabolites. - Pyridoxine and thiamine are cofactors for ethylene glycol metabolism and should be given (50 to 100 mg respectively) intramuscularly, four times per day for 2 davs. - Magnesium is also a cofactor and should be replenished. The status of 4-methylpyrazole, in the treatment regime, is still uncertain. For clearance of the material and its metabolites, haemodialysis is much superior to peritoneal dialysis. [Ellenhorn and Barceloux: Medical Toxicology] It has been suggested that there is a need for establishing a new biological exposure limit before a workshift that is clearly below 100 mmol ethoxy-acetic acids per mole creatinine in morning urine of people occupationally exposed to ethylene glycol ethers. This arises from the finding that an increase in urinary stones may be associated with such exposures. Laitinen J., et al: Occupational & Environmental Medicine 1996; 53, 595-600 #### **SECTION 5 Firefighting measures** #### **Extinguishing media** - Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture | rire incompatibility | Fire | Incompatibility | |----------------------|------|-----------------| |----------------------|------|-----------------| Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may #### Advice for firefighters | Advice for intelligitiers | | |---------------------------|---| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT
approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. | | HAZCHEM | Not Applicable | ### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** ### Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. Environmental hazard - contain spillage. Moderate hazard. Clear area of personnel and move upwind. | |--------------|--| | Major Spills | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 Handling and storage** #### Precautions for safe handling | Precautions for safe nand | aing | |---------------------------|---| | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. | | Other information | Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | ### Conditions for safe storage, including any incompatibilities | Suitable container | Packaging as recommended by manufacturer. | |-------------------------|---| | Storage incompatibility | Avoid reaction with oxidising agents | ### SECTION 8 Exposure controls / personal protection ### **Control parameters** ### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|---------------------|--|---------------|------------------|------------------|--| | Australia Exposure
Standards | titanium dioxide | Titanium dioxide | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure
Standards | silica
amorphous | Silica - Amorphous: Silica
gel | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure
Standards | silica
amorphous | Silica, fused | 0.05
mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure
Standards | silica
amorphous | Silica - Amorphous: Fume (thermally generated) (respirable dust) | 2 mg/m3 | Not
Available | Not
Available | (e) Containing no asbestos and < 1% crystalline silica. | | Australia Exposure
Standards | silica
amorphous | Silica - Amorphous: Fumed silica (respirable dust) | 2 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure
Standards | silica
amorphous | Silica - Amorphous:
Precipitated silica | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|------------------------------------|---|---------------------------|-----------------------|------------------|--| | Australia Exposure
Standards | silica
amorphous | Silica - Amorphous:
Diatomaceous earth
(uncalcined) | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure
Standards | ethylene glycol
monobutyl ether | 2-Butoxyethanol | 20 ppm /
96.9
mg/m3 | 242 mg/m3
/ 50 ppm | Not
Available | Not Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------------------|-----------|-------------|-------------| | titanium dioxide | 30 mg/m3 | 330 mg/m3 | 2,000 mg/m3 | | aluminium hydroxide | 8.7 mg/m3 | 73 mg/m3 | 440 mg/m3 | | silica amorphous | 18 mg/m3 | 200 mg/m3 | 1,200 mg/m3 | | silica amorphous | 18 mg/m3 | 100 mg/m3 | 630 mg/m3 | | silica amorphous | 120 mg/m3 | 1,300 mg/m3 | 7,900 mg/m3 | | silica amorphous | 45 mg/m3 | 500 mg/m3 | 3,000 mg/m3 | | silica amorphous | 18 mg/m3 | 740 mg/m3 | 4,500 mg/m3 | | ethylene glycol phenyl ether | 1.5 ppm | 16 ppm | 97 ppm | | ethylene glycol monobutyl ether | 60 ppm | 120 ppm | 700 ppm | | Ingredient | Original IDLH | Revised IDLH | |---------------------------------------|---------------|---------------| | titanium dioxide | 5,000 mg/m3 | Not Available | | di-C9-11-alkyl phthalate,
C10-rich | Not Available | Not Available | | aluminium hydroxide | Not Available | Not Available | | silica amorphous | 3,000 mg/m3 | Not Available | | ethylene glycol phenyl ether | Not Available | Not Available | | ethylene glycol monobutyl ether | 700 ppm | Not Available | #### **Occupational Exposure Banding** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |------------------------------|--|----------------------------------|--| | aluminium hydroxide | Е | ≤ 0.01 mg/m³ | | | ethylene glycol phenyl ether | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | ### **Exposure controls** # Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to
prevent employee overexposure. #### Individual protection measures, such as personal protective equipment ▶ Safety glasses with side shields. ► Chemical goggles. Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. #### Skin protection See Hand protection below #### Hands/feet protection - ► Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material | | can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Neoprene rubber gloves Nitrile rubber gloves (Note: Nitric acid penetrates nitrile gloves in a few minutes.) | |------------------|--| | Body protection | See Other protection below | | Other protection | Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: **OPAQUE PIGMENT WHITE** | Material | СРІ | |-------------------|-----| | BUTYL | Α | | PE/EVAL/PE | A | | SARANEX-23 | A | | NEOPRENE | В | | NITRILE | В | | PVC | В | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | PVA | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | A-AUS / Class
1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties | Appearance | White viscous liquid with a slight odour; does not mix with water. | | | |--|--|---|----------------| | | | | | | Physical state | Liquid | Relative density (Water = 1) | 1.72 @25C | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 225 (PMCC) | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | |---------------------------|----------------|----------------------------------|---------------| | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | 0.19 | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | 3.270 | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | | |------------------------------------|--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | | Possibility of hazardous reactions | See section 7 | | | Conditions to avoid | See section 7 | | | Incompatible materials | See section 7 | | | Hazardous decomposition products | See section 5 | | ### **SECTION 11 Toxicological information** ### Information on toxicological effects | Inhaled | Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation hazard is increased at higher temperatures. | |--------------|--| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. The toxicity of phthalates is not excessive due to slow oral absorption and metabolism. Absorption is affected by fat in the diet. Repeated doses can cause cumulative toxic effects, and symptoms include an enlarged liver which often reverses if exposure is maintained. Carbohydrate metabolism is disrupted, and cholesterol and triglyceride levels in the blood falls. In rats, there is also strong evidence of withering of the testicles. Some phthalates can increase the effects of antibiotics, thiamine (vitamin B1) and sulfonamides. | | Skin Contact | There is some evidence to suggest that the material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts,
abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Еуе | There is some evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure. The liquid may produce eye discomfort and is capable of causing temporary impairment of vision and/or transient eye inflammation, ulceration | | Chronic | Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. | | OPAQUE PIGMENT WHITE | TOXICITY | IRRITATION | |---------------------------------------|---|--| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | Mantana Ranta | dermal (hamster) LD50: >=10000 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | titanium dioxide | Inhalation(Rat) LC50: >2.28 mg/l4h ^[1] | Skin (human): 0.3 mg /3D (int)-mild * | | | Oral (Rat) LD50: >=2000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | TOXICITY | IRRITATION | | di-C9-11-alkyl phthalate, | TOXICITY dermal (guinea pig) LD50: 10000 mg/kg ^[2] | IRRITATION Eye (rabbit): 500 mg/24h mild | | di-C9-11-alkyl phthalate,
C10-rich | | | | • • | dermal (guinea pig) LD50: 10000 mg/kg ^[2] | Eye (rabbit): 500 mg/24h mild | | • • | dermal (guinea pig) LD50: 10000 mg/kg ^[2] Oral (Mouse) LD50; 1500 mg/kg ^[2] | Eye (rabbit): 500 mg/24h mild Skin (rabbit): 500 mg/24h mild | | silica amorphous | TOXICITY | IRRITATION | |------------------------------------|---|---| | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): non-irritating ** [Grace] | | | Inhalation(Rat) LC50: >0.09<0.84 mg/l4h ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | Oral (Rat) LD50: >1000 mg/kg ^[1] | Skin (rabbit): non-irritating * | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | ethylene glycol phenyl | Dermal (rabbit) LD50: 5000 mg/kg ^[2] | Eye (rabbit): 250 ug/24h - SEVERE | | ether | Oral (Rat) LD50: 1260 mg/kg ^[2] | Eye (rabbit): 6 mg - moderate | | | | Skin (rabbit): 500 mg/24h - mild | | | TOXICITY | IRRITATION | | | dermal (guinea pig) LD50: 210 mg/kg ^[2] | Eye (rabbit): 100 mg SEVERE * [Union Carbide] | | | Inhalation(Rat) LC50: 2.21 mg/l4h ^[2] | Eye (rabbit): 100 mg/24h-moderate | | ethylene glycol monobutyl
ether | Oral (Rat) LD50: 300 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | o.i.io | | Skin (rabbit): 500 mg, open; mild | | | | Skin: adverse effect observed (irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) $^{[1]}$ | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | ' | | | | | * IUCLID | | | | Laboratory (in vitro) and animal studies show, exposur the possibility of producing mutation. | e to the material may result in a possible risk of irreversible effects, wi | | | . , , , | en years after exposure to the material ends. This may be due to a | | | non-allergic condition known as reactive airways dysfu | nction syndrome (RADS) which can occur after exposure to high leve | ## TITANIUM DIOXIDE highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Exposure to titanium dioxide is via inhalation, swallowing or skin contact. When inhaled, it may deposit in lung tissue and lymph nodes causing dysfunction of the lungs and immune system. Absorption by the stomach and intestines depends on the size of the particle. It penetrated only the outermost layer of the skin, suggesting that healthy skin may be an effective barrier. There is no substantive data on genetic damage, though cases have been reported in experimental animals. Studies have differing conclusions on its cancer-causing potential. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. ### DI-C9-11-ALKYL PHTHALATE, C10-RICH High Molecular Weight Phthalate Esters (HMWPEs) Category The HMWPE group includes chemically similar substances produced from alcohols. These substances have been demonstrated to have few biological effects. They demonstrate minimal acute toxicity, with effect on the liver and kidney at high doses. They also cause reproductive and developmental toxicity, also, liver cancer. They are readily metabolised and excreted primarily via the urine. Repeated doses may cause liver and kidney damage, although the relevance to human health is questionable The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited organelles in the cytoplasm that are found in the cells of animals, plants, fungi, and protozoa. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS] For silica amorphous: Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d. In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. > After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. #### SILICA AMORPHOUS | ETHYLENE GLYCOL
PHENYL ETHER | Bacterial cell mutagen The aryl alkyl alcohol (AAA) fragrance ingredients have diverse chemical structures, with similar metabolic and toxicity profiles. The AAA fragrances demonstrate low acute and subchronic toxicity by skin contact and swallowing. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal. With the exception of benzyl alcohol, phenethyl and 2-phenoxyethyl AAA alcohols, testing in humans indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low. Testing suggests that at current human exposure levels, this group of chemicals does not cause maternal or developmental toxicity. Animal testing shows no cancer-causing evidence, with little or no genetic toxicity. | | | |--
--|--------------------------|---| | ETHYLENE GLYCOL
MONOBUTYL ETHER | NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASCC (NZ) SDS For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in toxicity to both the mother and the embryo. Reproductive effects were thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood cells. It is thought that in animals butoxyethanol may cause generalized clotting and bone infarction. In animals, 2-butoxyethanol also increased the rate of some | | | | TITANIUM DIOXIDE & ALUMINIUM HYDROXIDE | No significant acute toxicological data identified in literature search. | | | | TITANIUM DIOXIDE & DI-C9-11-ALKYL PHTHALATE, C10-RICH & ETHYLENE GLYCOL PHENYL ETHER & ETHYLENE GLYCOL MONOBUTYL ETHER | The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | | | | ETHYLENE GLYCOL
PHENYL ETHER &
ETHYLENE GLYCOL
MONOBUTYL ETHER | The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | | | | Acute Toxicity | x | Carcinogenicity | x | | Skin Irritation/Corrosion | × | Reproductivity | X | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | x | | Acute loxicity | ^ | Carcinogenicity | ^ | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | | | | | | 🗶 – Data either not available or does not fill the criteria for classification Legend: ✓ – Data available to make classification ### **SECTION 12 Ecological information** ### Toxicity | OPAQUE PIGMENT WHITE | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------------------------|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | titanium dioxide | Endpoint | Test Duration (hr) | Species | Value | Source | | | BCF | 1008h | Fish | <1.1-9.6 | 7 | | | LC50 | 96h | Fish | 1.85-3.06mg/l | 4 | | | EC50 | 72h | Algae or other aquatic plants | 3.75-7.58mg/l | 4 | | | EC50 | 48h | Crustacea | 1.9mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 179.05mg/l | 2 | | | NOEC(ECx) | 504h | Crustacea | 0.02mg/l | 4 | | di-C9-11-alkyl phthalate,
C10-rich | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 504h | Crustacea | >0.03mg/l | 1 | | | LC50 | 96h | Fish | >0.37mg/l | 2 | |---------------------------------|----------------|--------------------|--|--------------|------------------| | | EC50 | 96h | Algae or other aquatic plants | >0.3711g/l | 1 | | | EC50 | 48h | Crustacea | >0.18mg/l | 1 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 72h | Algae or other aquatic plants | >100mg/l | 1 | | | EC50 | 72h | Algae or other aquatic plants Algae or other aquatic plants | 0.0169mg/l | 2 | | aluminium hydroxide | EC50 | 96h | Algae or other aquatic plants | 0.0103Hig/I | 2 | | | | 96h | Fish | | 2 | | | LC50 | | | 0.57mg/l | | | | EC50 | 48h | Crustacea | >0.065mg/l | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC0(ECx) | 24h | Crustacea | >=10000mg/l | 1 | | | EC50 | 96h | Algae or other aquatic plants | 217.576mg/l | 2 | | silica amorphous | EC50 | 72h | Algae or other aquatic plants | 14.1mg/l | 2 | | | LC50 | 96h | Fish | 1033.016mg/l | 2 | | | EC50 | 48h | Crustacea | >86mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | 154mg/l | 2 | | ethylene glycol phenyl
ether | EC50 | 72h | Algae or other aquatic plants | >100mg/l | 2 | | ether | EC50 | 48h | Crustacea | 460mg/l | 2 | | | NOEC(ECx) | 24h | Fish | 5mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | 1700mg/l | Not
Available | | ethylene glycol monobutyl | EC50 | 72h | Algae or other aquatic plants | 623mg/l | 2 | | ether | EC50 | 48h | Crustacea | 164mg/l | 2 | | | EC10(ECx) | 48h | Crustacea | 7.2mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 720mg/l | 2 | | Legend: | 4. US EPA, Eco | • • | oe ECHA Registered Substances - Ecotoxicologio
Data 5. ECETOC Aquatic Hazard Assessment Da
ncentration Data 8. Vendor Data | • | - | On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems. DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------|---------------------------|-----------------------------| | titanium dioxide | HIGH | HIGH | | silica amorphous | LOW | LOW | | ethylene glycol phenyl ether | LOW | LOW | | ethylene glycol monobutyl ether | LOW (Half-life = 56 days) | LOW (Half-life = 1.37 days) | ### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------------------------|-----------------------| | titanium dioxide | LOW (BCF = 10) | | di-C9-11-alkyl phthalate,
C10-rich | HIGH (BCF = 3500) | | silica amorphous | LOW (LogKOW = 0.5294) | | ethylene glycol phenyl ether | LOW (LogKOW = 1.16) | | ethylene glycol monobutyl ether | LOW (BCF = 2.51) | ### Mobility in soil | Ingredient | Mobility | |------------------|-------------------| | titanium dioxide | LOW (KOC = 23.74) | | Ingredient | Mobility | |---------------------------------|-------------------| | silica amorphous | LOW (KOC = 23.74) | | ethylene glycol phenyl ether | LOW (KOC = 12.12) | | ethylene glycol monobutyl ether | HIGH (KOC = 1) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ **DO NOT** allow wash water from cleaning or process equipment to enter drains. - It may be
necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO. | | |------------------|----------------|--| | HAZCHEM | Not Applicable | | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---------------------------------------|---------------| | titanium dioxide | Not Available | | di-C9-11-alkyl phthalate,
C10-rich | Not Available | | aluminium hydroxide | Not Available | | silica amorphous | Not Available | | ethylene glycol phenyl ether | Not Available | | ethylene glycol monobutyl ether | Not Available | #### Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |---------------------------------------|---------------| | titanium dioxide | Not Available | | di-C9-11-alkyl phthalate,
C10-rich | Not Available | | aluminium hydroxide | Not Available | | silica amorphous | Not Available | | ethylene glycol phenyl ether | Not Available | | ethylene glycol monobutyl ether | Not Available | #### **SECTION 15 Regulatory information** Safety, health and environmental regulations / legislation specific for the substance or mixture Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### di-C9-11-alkyl phthalate, C10-rich is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List #### aluminium hydroxide is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### silica amorphous is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals $\label{thm:continuous} \mbox{Australia Model Work Health and Safety Regulations - Hazardous chemicals} \mbox{ (other than lead) requiring health monitoring}$ Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### ethylene glycol phenyl ether is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) #### ethylene glycol monobutyl ether is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$ Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### **National Inventory Status** | National Inventory | Status | | | | |--|--|--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | | Canada - DSL | Yes | | | | | Canada - NDSL | No (di-C9-11-alkyl phthalate, C10-rich; aluminium hydroxide; ethylene glycol phenyl ether; ethylene glycol monobutyl ether) | | | | | China - IECSC | Yes | | | | | Europe - EINEC / ELINCS /
NLP | Yes | | | | | Japan - ENCS | Yes | | | | | Korea - KECI | Yes | | | | | New Zealand - NZIoC | Yes | | | | | Philippines - PICCS | Yes | | | | | USA - TSCA | Yes | | | | | Taiwan - TCSI | Yes | | | | | Mexico - INSQ | Yes | | | | | Vietnam - NCI | Yes | | | | | Russia - FBEPH | No (di-C9-11-alkyl phthalate, C10-rich) | | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | | | ### **SECTION 16 Other information** | Revision Date | 17/03/2023 | |---------------|------------| | Initial Date | 29/11/2013 | #### **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|---| | 8.1 | 23/12/2022 | Classification review due to GHS Revision change. | | 10.1 | 17/03/2023 | Hazards identification - Classification, Identification of the substance / mixture and of the company / undertaking - Supplier Information, Identification of the substance / mixture and of the company / undertaking - Synonyms | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers **ENCS: Existing and New Chemical Substances Inventory** KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.